Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Chuang Xie,^a Li-Na Zhou,^a Bao-Hong Hou,^a Jing-Kang Wang^a and Wei Chen^{a,b}*

^aThe State Research Center of Industrialization for Crystallization Technology, Tianjin University, Tianjin 300072, People's Republic of China, and ^bTianjin Economic and Technological Development Area, Tianjin, People's Republic of China

Correspondence e-mail: chenweink@eyou.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å Disorder in solvent or counterion R factor = 0.036 wR factor = 0.088 Data-to-parameter ratio = 13.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[silver(I)- μ -1-phenylsulfanyl-2-(2-pyridyl-sulfanyl)ethane- $\kappa^2 S^1$: N^2] tetrafluoroborate]

In the title complex, $\{[Ag(C_{13}H_{13}NS_2)]BF_4\}_n$, the Ag^I ions show linear coordination through the N atom from one 1phenylsulfanyl-2-(2-pyridylsulfanyl)ethane (*L*) molecule and the S atom of another. Each *L* ligand bridges two adjacent Ag atoms through the donor molecules, leading to a linear chain structure. Received 28 July 2005 Accepted 5 August 2005 Online 28 September 2005

Comment

There are many silver(I) complexes with substituted bisthioether compounds featuring unusual coordination motifs (Hong *et al.*, 2000) in which donor atoms have always been the same. We report here the structure of the silver tetrafluoroborate complex, (I), of AgBF₄ with the *N/S*-donor ligand 1-phenylsulfanyl-2-(2-pyridylsulfanyl)ethane (*L*).

In (I), the Ag^{I} atom exists in a nearly linear geometry (Fig. 1), comprising a pyridyl *N*-atom donor and a phenyl-

Figure 1 ORTEPII (Johnson, 1976) view of the title compound, with 30%

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved $x_1, \frac{1}{2} + y, \frac{3}{2} - z$.]

A view of the chains linked through $Ag \cdots S$ weak interactions (dashed lines). H and disordered F atoms have been omitted.

sulfanyl S-atom donor from different *L* molecules. The bond dimensions are within the range reported in similar complexes (Wang *et al.*, 1992; Constable *et al.*, 1998; Hou *et al.*, 2004). The BF_4^- anion shows a weak interaction with the Ag^I center with an $Ag1\cdots$ F1 distance of 2.630 (9) Å, which is longer than the sum of ionic radii (2.31 Å; Shannon & Prewitt, 1969). This interaction causes a small distortion of the linear coordination of the Ag^I atom [S1-Ag1- $N1^i$ = 174.02 (9)°].

In the ligand, the phenyl and pyridyl rings are inclined with respect to each other at an angle of 73.1 (2)° and the S1···S2 non-bonded distance is 4.417 (2) Å. Each ligand bridges two adjacent Ag atoms through Ag—N and Ag—S coordination to give rise to an infinite chain running along the *b* axis. In the crystal packing of (I), adjacent chains are potentially linked into a two-dimensional network (Fig. 2) through weak Ag··S interactions [Ag1···S2($x, \frac{3}{2} - y, -\frac{1}{2} + z$) = S2···Ag1($x, \frac{3}{2} - y, \frac{1}{2} + z$) = 3.013 (1) Å; Suenaga *et al.*, 1999]. The anions are found between the layers.

Experimental

1-Phenylsulfanyl-2-(2-pyridylsulfanyl)ethane (*L*) was prepared according to a reported procedure (Chen *et al.*, 2001). A solution containing a 1:1 molar ratio of AgBF₄ (0.2 mmol) and *L* (0.2 mmol) in acetonitrile–chloroform (1:1) was stirred for 30 min at room temperature, and the mixture was filtered. Colorless single crystals suitable for X-ray investigation were obtained from this filtrate by slow evaporation of the solvent.

Crystal data

$[Ag(C_{13}H_{13}NS_2)]BF_4$	$D_x = 1.836 \text{ Mg m}^{-3}$
$M_r = 442.04$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 1006
a = 11.252 (3) Å	reflections
b = 13.999 (4) Å	$\theta = 3.6-25.8^{\circ}$
c = 11.315 (3) Å	$\mu = 1.56 \text{ mm}^{-1}$
$\beta = 116.227 \ (4)^{\circ}$	T = 293 (2) K
$V = 1598.8 (8) \text{ Å}^3$	Block, colorless
Z = 4	$0.16 \times 0.12 \times 0.08 \text{ mm}$

Data collection

Bruker SMART 1000 CCD	3260 independent reflections
diffractometer	2324 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.036$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.4^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 14$
$T_{\min} = 0.643, \ T_{\max} = 0.883$	$k = -13 \rightarrow 17$
9039 measured reflections	$l = -14 \rightarrow 9$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0437P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.036$	+ 0.3971P]
$wR(F^2) = 0.088$	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.99	$(\Delta/\sigma)_{\rm max} = 0.004$
3260 reflections	$\Delta \rho_{\rm max} = 0.52 \ {\rm e} \ {\rm \AA}^{-3}$
235 parameters	$\Delta \rho_{\rm min} = -0.39 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

Table 1
Selected geometric parameters (Å, °).

Ag1-N1 ⁱ	2.181 (3)	Ag1-S1	2.4127 (11)	
-		-		
N1 ⁱ -Ag1-S1	174.02 (9)			
Symmetry code: (i) $-x + 1$, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.				

All H atoms were positioned geometrically with $Csp^2 - H = 0.93 \text{ Å}$ and $Csp^3 - H = 0.97 \text{ Å}$; they were constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$. The BF₄⁻ anion was observed to be disordered and was eventually modeled as eight 0.5-occupied F atoms surrounding the central B atom.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998); software used to prepare material for publication: *SHELXTL*.

We gratefully acknowledge financial support from the National Natural Science Foundation of China (No. 20206022) and Tianjin Natural Science Foundation (05YFJZJC02000).

References

- Bruker (1998). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, W., Li, J.-R., Wang, W.-Z., Bu, X.-H., Zhang, R.-H. & Chen, R.-T. (2001). Chem. J. Chin. Univ. 22, 22–24.
- Constable, E. C., Edwards, A. J., Haire, G. R., Hannon, M. J. & Raithby, P. R. (1998). *Polyhedron*, **17**, 243–253.
- Hong, M.-C., Zhao, Y.-J., Su, W.-P., Cao, R., Fujita, M., Zhou, Z.-Y. & Chan, A. S. C. (2000). Angew. Chem. Int. Ed. 39, 2468–2470.
- Hou, L., Li, D., Yin, Y.-G., Wu, T. & Ng, S. W. (2004). Acta Cryst. E60, m1106m1107.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Shannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925–929.
- Sheldrick. G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Suenaga, Y., Kuroda-Sowa, T., Maekawa, M. & Munakata, M. (1999). J. Chem. Soc. Dalton Trans. pp. 2737–2741.
- Wang, W.-Z., Shao, P.-X., Yao, X.-K., Wang, R.-J. & Wang, H.-G. (1992). J. Struct. Chem. 11, 17–19.